頂尖科學家齊聚台灣 高熵合金研究邁向新紀元

國立情華大學 NATIONAL TSING HUA UNIVERSITY

2016首頁故事

頂尖科學家齊聚台灣 高熵合金研究邁向新紀元

全球首屆「高熵材料國際研討會」7日在本校舉行。被譽為「高熵合金之父」的本校材料所教授 葉均蔚在對 170名中外學者致詞時,以「山窮水盡疑無路,柳暗花明又一村」來形容他突破傳 統金屬學、混合多種金屬,開創出高熵合金此一研究新領域的心境,並宣布在與會學者的共同努 力下,高熵材料的研發將邁向新紀元。

過去幾千年來,人類製造合金皆以鐵、鋁等某一種金屬為主,再添加少量其他金屬,來改善強度、 韌性。若添加多種且大量的其他金屬,所得合金容易脆化。此一迷思被葉均蔚所推翻,他在 1995 年首度有高熵合金的構想,並在 2004 年發表混合 5、6 種以上等比例金屬、且性能更佳的「高 熵合金」,自此開創了全新的材料研究及應用領域。

賀陳弘校長在研討會開幕致詞時指出,全球首屆「高熵材料國際研討會」在高熵合金的「誕生地」 清華大學舉行,格外有意義。葉教授在 21 年前在此孕育出高熵合金的構想,如今頂尖科學家共 聚清華,造福世界,令本校師生備感光榮。

陳力俊前校長盛讚譽葉均蔚教授深具創造性、革新性,對抗當時所知的理論,克服一切困難,開 創了科學界的一片嶄新風景。他也指出高熵材料研發的挑戰,包括合金的組成可能性太多,必須 以更有效方式篩選出好的、或具特殊功能的組合。此外,如何展現它的經濟價值,把它從實驗室 導入商業應用,促進產業經濟,也還有相當長的路要走。

工研院材化所所長彭裕民則向外籍學者介紹新竹三寶—米粉、玻璃、工業園區,期盼他們有機會多了解結合頂尖大學、研究機構及尖端產業於一地的新竹。

美國田納西大學教授廖凱輝表示,高熵材料研究是目前最熱門的研究領域之一,去年有 250 篇以上的論文發表,被引用次數超過 5 千次,今年還有機會再創新高。他預測,在未來 10 至 15 年之內,高熵領域將可望產生諾貝爾獎得主。

今年 5 月 19 日出版的自然(Nature)期刊特別刊出專題報導--「多元金屬合成的更強更韌更延合金」,認可葉均蔚為創造出高熵合金的第一人,並提到約當同時,英國布拉福大學教授布萊恩 肯特(Brian Cantor)也進行類似的研究。肯特教授今天特別來台出席研討會,他表示,當年混合多種金屬在外人眼中確實是瘋狂的想法,很難說服學生或爭取贊助,因此,當他看到葉均蔚為高熵合金命名、吸引學界矚目,感到十分佩服。

「只要你找到一個好點子,就追隨它吧,它會讓一切變得值得。」 肯特教授認為,葉均蔚教授發現高熵合金的故事,就是最好的例子。

這次的研討會將發表包括高熵合金、陶瓷、高分子等高熵複合材料的最新研究成果。共有來自世界各地約二百位學者專家參與,發表一百七十篇最新研究成果。

葉均蔚表示,今明兩天的研討會有許多亮點,例如汽車材料研發,目前汽車所用的超合金渦輪增壓葉片可耐 800 度 C 的高溫,現在則可望以高熵合金做出耐攝氏 1000 度高溫以上、又耐高壓的葉片,增加引擎效率。還有油井公司研發抽油引擎的軸承材料,為發表 20 分鐘研究成果千里迢迢來台。此外,抗輻射材料、抗電磁波材料、優於 304 不銹鋼的耐腐蝕合金、高熵合金的理論模擬等研究結果都將在這次研討會發表。

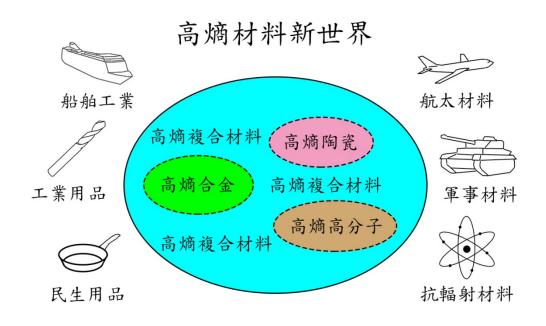
高熵小辭典:

過去幾千年來,人類製造合金皆以鐵、鋁等某一種金屬為主,再添加少量其他金屬,以改善性質。若添加多種且大量的其他金屬,所得合金勢必很脆。這種迷思被本校材料工程系教授葉均蔚推翻,在 2004 年首先發表混合 5、6 種以上等比例金屬,由實驗證明可得到性能優秀的合金,自此開創了全新的材料研究及應用領域。

葉均蔚解釋,傳統合金幾乎都以某一金屬元素為主,添加少量的其他元素,比如在鐵中加 0.02 ~2%的碳成為碳鋼,鐵加 18%的鉻、8%鎳成為 304 不銹鋼,鋁合金的鋁至少在 80%以上,這種少量添加的合金概念受限於傳統合金觀念,認為其他金屬的添加量越多,就會合成越多的脆性化合物,今合金變脆、易碎,甚至無法合成。

時常逆向思考的葉均蔚,產生了一種靈感,何不將 4 或 5 種金屬以等比例混合在一起?這樣不同元素原子可能的排列方式就會大幅增加,產生無序或高熵(high entropy)效應,促進每個元素原子在原子層之間隨機散佈,而抑制相異原子排列有序的脆性化合物,使材料反而得到韌性。因為多元素的混合,帶來大家忽略的高熵效應,因此葉均蔚將此類合金取名為高熵合金(high entropy alloys)。

葉均蔚發表的第一代高熵合金,含 5 種以上金屬元素,每種元素以相同比例的原子數混合而成,變得更強(抗折斷)、更韌(抗變形),且耐高溫、腐蝕、輻射、磨擦。7 年前開始,他進而發表第二代進化版高熵合金,每種元素的原子數以不同比例調配,證明性能可更優於第一代的高熵合金。


傳統陶瓷也以一種化合物為主,如今可採用多種化合物做成「高熵陶瓷」,展現不同的優越特性, 甚至出現混合高熵合金及高熵陶瓷的複合材料,葉均蔚將它們統稱為「高熵材料」。

葉均蔚教授主持研討會。

全球首屆高熵合金研討會吸引國內外學者、相關產業參與。

