以上六個Script功能提供基本運作功能,若您的瀏覽器不支援JavaScript功能,若網頁功能無法正常使用時,請開啟瀏覽器JavaScript狀態。 跳到主要內容區塊

媒體報導

清大發現低溫水世界 榮登國際頂尖期刊
新聞來源:自由時報   發佈時間:2018-07-03

 2018-06-20  記者 林曉雲 台北報導

人類如果想在未來完成數百年的太空旅行,人體冷凍休眠的技術將是關鍵,但細胞一旦結冰受損,目前技術恐難以回復原來功能。國立清華大學化學系教授江昀緯實驗室,首度利用電子自旋共振實驗技術ST-ESR,驗證水溶液降至-93℃的低溫下,仍可以有兩種不同液相存在,為細胞低溫保存技術的研究再推進一大步。
 
這篇由江昀緯與其指導的博士生郭雲軒完成的論文「水分子與蛋白質的動態關聯」,揭開了水與蛋白質互動的神秘面紗。過去學界多認為是水主控了蛋白質的運動,但這項研究證實部分蛋白質運動元素實超脫了水分子的掌控。
 
此篇論文最近登上美國化學會跨領域類頂尖期刊ACS Central Science,這也是台灣學術界在該期刊中發表的首篇長篇論文,文章更被置頂於期刊官網首頁,標題寫著「水『奴役』蛋白質運動嗎?」顯示這項突破性研究成果的重要性。
 
江昀緯團隊採用全台僅有、價值4千多萬元電子自旋共振實驗設備ST-ESR,偵測水分子在低溫下的運動,觀察到在-33至-93℃的低溫下會發生「液-液臨界現象」。
 
清華研究團體發現,調入微量甘油的水溶液在-13℃以下,就會進入「液相一」,溫度再降至-83℃「液相二」則會出現,這兩種液態相都相當穩定,但密度等性質不同,運動方式也不同。江昀緯說,「這現象似乎違反直覺,因為兩種相的組成物都一樣、都是液體,但在低溫下卻可以彼此分離,存在於蛋白質表面。」
 
江昀緯解釋,一般的食物水果若以低溫冷凍,一旦結冰,細胞就易脹破,也就是說,結冰的固態是最不理想的保存方式,很容易造成蛋白質的損傷。如果有天人類要去遙遠的星球太空旅行,需要冷凍數光年再復甦,就會需要更進步的低溫保存方式,如以低溫液態保存,清華團隊的研究即是往此方向推進一大步。
 
此外,這篇研究也解開了水與蛋白質互動之謎,朝低溫方向展開研究,採用了罕見的電子自旋共振實驗技術ST-ESR,因而看到了過去其他技術看不到的慢尺度運動,開拓了一片新的蛋白質動態研究領域。其次是對蛋白質進行定點突變、調控蛋白質側鏈長度、改變其單一側鏈物理性質,在獨特的化學修飾與作法下,即可清楚辨認出蛋白質與水分子各自的運動,證明許多蛋白質運動元素確實可以脫離水分子的掌控,得以推翻過去學界普遍認為水主控蛋白質運動的認知。
 
以建築來比喻,要蓋一棟摩天大樓,用一塊塊磚頭砌牆絕不可能完成,如今提供了整棟摩天大樓的鋼骨結構(蛋白質基本運動元素),就只需要用混凝土隔間、糊外牆即可完成。找出蛋白質基本運動元素,科學家將可以更清楚解析蛋白質如何藉由運動改變自身結構與功能,並在細胞內工作。
 
此篇論文的第一作者為郭雲軒,去年剛從清大畢業,目前服替代役中,積極準備赴國外進行博士後研究工作。江昀緯十分肯定雲軒對科學的熱情與堅持,「全球會ST-ESR技術的人屈指可數,這項研究全靠雲軒從頭做起,取得多項創新成果。」